
Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 1

Technical Note

Using the Rep++ Trace System

Overview

Rep++ studio comes with a trace system that allows a developer to follow the execution of a

program that uses the Rep++ class library. The Rep++ library contains configurable, built-in trace

messages divided into multiple categories. The trace messages can be configured using the

Rep++ Trace Configuration Panel, which enables the developer to select the traces to activate and

how the trace messages are presented (file, monitor, etc.). For example, the developer can choose

to view the trace of the Execution method of the Database trace category on the monitor. In this

case, a message will be displayed each time Rep++ is called to execute a SQL command.

Rep++ studio also includes a program that displays the Rep++ trace messages, the Rep++ Trace

Monitor. Furthermore, it is also possible for the developer to add custom traces programmatically

using the Rep++ Trace object.

This article describes how to use the Rep++ Trace system and take advantage of its flexible,

configurable trace messages to record or view various aspects of the execution of an application.

Note: code samples are given in C#1.

1 The products and software mentioned in this document are registered trademarks, trademarks or trade names of their

respective holders.

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 2

Using the Rep++ Trace System

The Rep++ Trace Configuration Panel

Rep++ Trace Configuration Panel is used to set up the Rep++ traces. These traces are grouped by

categories and subcategories, and are displayed as a tree. To configure one or several traces, you

simply select the related nodes in the tree view and specify the state and destination of the trace

messages. When the node selected is a trace category or subcategory, the configuration entered

by the user applies for the all the traces they contain.

Opening the Rep++ Trace Configuration Panel

To open Rep++Trace Configuration Panel, you can use the shortcut installed with Rep++ in the

Windows® Start menu, or you can open it from the command prompt: The name of the

executable file is sdpanel.exe, which is located in the Rep++InstallDir/bin/sdwin32/ or sdwin64/

folder.

Figure 1. The Trace Configuration Panel. The categories can be expanded to show the subcategories and traces

that can be activated or disabled. When the root Trace node is selected, the global activation settings page is

displayed.

Rep++ Trace categories

The Rep++ Trace categories appearing in the configuration panel are:

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 3

• .NET: The traces for the Rep++ .NET layer.

• Com: The traces for the Rep++ COM layer.

• Database: The traces for the database access.

• Event: The traces for the Rep++ events.

• General: General traces, such as the debugging trace.

• Rowset: The traces for the Rep++ Rowset object.

• LibC: The traces for C++ Rep++ library.

• Memory: The traces for the memory access.

• MessageQueue: The traces related to MSMQ.

• Ole: Traces used only for SQL design.

• Resource Manager: Traces related to the two-phase commit.

• Serialize: Traces related to the serialization of Rep++ Field objects using XML.

• Transactions: Traces related to the two-phase commit.

• XA Client: Traces related to the two-phase commit.

The most used trace categories for Rep++ users are:

• Database

• Event

• General

• Rowset

• LibC.

Configuring traces

Global Configuration

You can set the global configuration by selecting the root node of the tree view (see Figure 1).

To activate the monitoring of any trace, you must firts check the Activated option: if this option is

not checked, no active trace will be monitored.

This page enables you to set the header of all the displayed messages. This header can contain

one or more of the following:

• Complete Name: The complete name of the trace.

• Date: The date of the message.

• Hour: The time of the message.

• Tick Count: The time of the message in tick format.

If you choose to display trace messages in a file, you can specify a file name. You can also specify

the IP address and port number of a remote machine if you choose to generate trace messages

on a remote machine.

Trace configuration

To configure all traces of a category, click the category node and set the state and message

destination. The settings will hold for all individual traces of the category, unless you change them

for a specific trace.

To configure an individual trace, you have to select it in the treeview and set its state and the

destination of the messages. There are three states for a trace:

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 4

• Disabled. The trace is disabled and the messages related to this trace will not be displayed.

• Activated. The trace is activated and the messages related to this trace will be displayed.

• Detail. The trace is activated and all the messages related to this trace will be displayed in

more details. Note that some traces do not have this option.

• Specific to the trace. Applies to the node, and indicates the settings vary with the traces of

the category.

You can specify one or more destinations for an active trace.

• Rep++Trace Monitor.

• Windows Debugging Program. The trace messages will be displayed in a Visual Studio®

output window.

• File. The trace messages will be displayed in the file specified by the global configuration.

• Window message box.

• TCP/IP Monitor. The trace messages will be displayed in a Rep++ Trace monitor executed on

a remote machine. The IP address of the machine and the port number of Rep++ Trace

Monitor are defined in the global configuration.

Figure 2. The Trace Configuration Panel for traces. When you select a trace, such as the Deletion trace in the

Rowset category, the individual trace settings page is displayed.

The Rep++ Trace Monitor

Rep++ Trace Monitor displays the trace messages for the activated Rep++ traces. Once

displayed, these messages can be saved in a file.

To open the Rep++ Trace Monitor you can use the shortcut installed with Rep++ in the

Windows® Start menu. You can also launch the Rep++Trace Monitor from the command prompt.

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 5

The name of the executable file is sdmon.exe, which is located in the Rep++InstallDir/bin/sdwin32

or /bin/sdwin64/ folder.

Rep++ Trace Monitor can be also started through Rep++ Trace Configuration Panel. Simply select

the root node of the tree view (Trace) and click Start Trace Monitor.

The trace messages displayed in this example are formatted as follow:

• Tick Count: The time of the message as a tick.

• TID: The thread identification.

• SID: The session identification. Helpful only for Web applications.

• Trace name.

• Message text.

Using the Rep++ Trace system

The examples presented in this section use the DEMO system that is provided with the Rep++

user training or reference guides. For the purpose of the example, make sure that you do not use

the Delay Reading option the nodes of the CLIENT RowsetTreeDef.

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 6

Displaying the SQL commands

Suppose you want to display the SQL commands executed when you use the CLIENT

RowsetTreeDef to read the data from the database into a RowsetTree:

RepPP.Application app;

RepPP.RowsetTreeDef rstDef;

RepPP.RowsetTree rsTree;

app = RepPP.Application.CreateFromRes();

rstDef = app.RowsetTreeDefs["CLIENT"];

rstDef.BuildSqlCommand();

rsTree = rstDef.RowsetTrees.Add();

rsTree.ReadFromDb();

. . .

rsTree.Dispose();

app.Release();

To visualize the SQL commands executed in this case, you have to activate the Database/Execute

trace:

1. Open the Rep++ Trace Configuration Panel.

2. Expand the Database trace category and select the Execute trace in the tree view.

3. Activate this trace by clicking the Activated option.

4. Select the Monitor check box to display the messages related to this trace in Rep++ Trace

Monitor.

5. Click Apply.

6. Select the root node of the tree view (Trace) and click Start Trace Monitor start the monitor.

7. Run your program and check the messages displayed in Rep++ Trace Monitor.

241744046 TID=00000aec SID=0000 Execute - : (0x0434:0x9AE0) Int Cmd='SELECT

CLIENTCODE,CLIENTFIRSTNAME,CLIENTLASTNAME,CLIENTTYPE,CLIENTSALESTODATE,CIECODE,

CREATIONDATE,MODIFICATIONDATE,DESCRIPTION FROM DEMO_CLIENT ORDER BY CLIENTCODE'

241744046 TID=00000aec SID=0000 Execute - : (0x0434:0x9AE0) Int Cmd='SELECT

CLIENTCODE,CLIENTFIRSTNAME,CLIENTLASTNAME,CLIENTTYPE,CLIENTSALESTODATE,CIECODE,

CREATIONDATE,MODIFICATIONDATE,DESCRIPTION FROM DEMO_CLIENT ORDER BY CLIENTCODE'

241744046 TID=00000aec SID=0000 Execute - : (0x0434:0x9AE0) Row Count=-1

Status=0

241744046 TID=00000aec SID=0000 Execute - : (0x0434:0x9AE0) Row Count=-1

Status=0

241744062 TID=00000aec SID=0000 Execute - : (0x0435:0xA2B0) Int Cmd='SELECT

ADDRESSCODE,ADDRESS_LINE1,ADDRESS_LINE2,CITY,POSTALCODE,PROVINCE FROM

DEMO_ADDRESS WHERE CLIENTCODE=? ORDER BY ADDRESSCODE'

241744062 TID=00000aec SID=0000 Execute - : (0x0435:0xA2B0) Int Cmd='SELECT

ADDRESSCODE,ADDRESS_LINE1,ADDRESS_LINE2,CITY,POSTALCODE,PROVINCE FROM

DEMO_ADDRESS WHERE CLIENTCODE=? ORDER BY ADDRESSCODE'

241744062 TID=00000aec SID=0000 Execute - : (0x0435:0xA2B0) Row Count=-1

Status=0

241744062 TID=00000aec SID=0000 Execute - : (0x0435:0xA2B0) Row Count=-1

Status=0

241744062 TID=00000aec SID=0000 Execute - : (0x0427:0x6D60) Int Cmd='SELECT

PHONECODE,PHONETYPE,PHONENUMBER FROM DEMO_PHONE WHERE CLIENTCODE=? AND

ADDRESSCODE=? ORDER BY PHONECODE'

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 7

241744062 TID=00000aec SID=0000 Execute - : (0x0427:0x6D60) Int Cmd='SELECT

PHONECODE,PHONETYPE,PHONENUMBER FROM DEMO_PHONE WHERE CLIENTCODE=? AND

ADDRESSCODE=? ORDER BY PHONECODE'

241744062 TID=00000aec SID=0000 Execute - : (0x0427:0x6D60) Row Count=-1

Status=0

241744062 TID=00000aec SID=0000 Execute - : (0x0427:0x6D60) Row Count=-1

Status=0

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0x8790) Int Cmd='SELECT

PHONECODE,PHONETYPE,PHONENUMBER FROM DEMO_PHONE WHERE CLIENTCODE=? AND

ADDRESSCODE=? ORDER BY PHONECODE'

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0x8790) Int Cmd='SELECT

PHONECODE,PHONETYPE,PHONENUMBER FROM DEMO_PHONE WHERE CLIENTCODE=? AND

ADDRESSCODE=? ORDER BY PHONECODE'

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0x8790) Row Count=-1

Status=0

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0x8790) Row Count=-1

Status=0

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0xB938) Int Cmd='SELECT

ADDRESSCODE,ADDRESS_LINE1,ADDRESS_LINE2,CITY,POSTALCODE,PROVINCE FROM

DEMO_ADDRESS WHERE CLIENTCODE=? ORDER BY ADDRESSCODE'

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0xB938) Int Cmd='SELECT

ADDRESSCODE,ADDRESS_LINE1,ADDRESS_LINE2,CITY,POSTALCODE,PROVINCE FROM

DEMO_ADDRESS WHERE CLIENTCODE=? ORDER BY ADDRESSCODE'

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0xB938) Row Count=-1

Status=0

241744078 TID=00000aec SID=0000 Execute - : (0x0427:0xB938) Row Count=-1

Status=0

241744093 TID=00000aec SID=0000 Execute - : (0x0427:0xD398) Int Cmd='SELECT

PHONECODE,PHONETYPE,PHONENUMBER FROM DEMO_PHONE WHERE CLIENTCODE=? AND

ADDRESSCODE=? ORDER BY PHONECODE'

241744093 TID=00000aec SID=0000 Execute - : (0x0427:0xD398) Int Cmd='SELECT

PHONECODE,PHONETYPE,PHONENUMBER FROM DEMO_PHONE WHERE CLIENTCODE=? AND

ADDRESSCODE=? ORDER BY PHONECODE'

241744093 TID=00000aec SID=0000 Execute - : (0x0427:0xD398) Row Count=-1

Status=0

241744093 TID=00000aec SID=0000 Execute - : (0x0427:0xD398) Row Count=-1

Status=0

The generated trace contains all the SQL SELECT commands executed when reading the client

data from the database, the addresses of each client and the phone numbers for each address.

With each SQL command displayed, the trace also contains the number of records returned by

the execution of this SQL command (row count, which depends the DBMS and is affected by

Insert, Update or Delete SQL command).

Displaying the SQL commands’ binding values

In the last example, the SQL command used to load the addresses of a client is a parameterized

query. The parameter of this query is CLIENTCODE.

Execute - : (0x0435:0xA2B0) Int Cmd='SELECT

ADDRESSCODE,ADDRESS_LINE1,ADDRESS_LINE2,CITY,POSTALCODE,PROVINCE FROM

DEMO_ADDRESS WHERE CLIENTCODE=? ORDER BY ADDRESSCODE'

To display the binding values of this query, you must activate the Bind trace from the Database

category:

1. Use the Rep++ Trace Configuration Panel to activate the Bind trace under the Database

category.

2. Launch the Rep++ Trace Monitor.

3. Run your program.

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 8

Note that trace messages are now generated for the binding of the client addresses’ SELECT

command. These messages show the name of the binding variable and the substitution value of

this variable.

248613015 TID=00000254 SID=0000 Bind - : (0x0435:0xA2B0)

Variable='CLIENT.CLIENTCODE' Type=10 Size=0 Value='1'

248613015 TID=00000254 SID=0000 Bind - : (0x0435:0xA2B0)

Variable='CLIENT.CLIENTCODE' Type=10 Size=0 Value='1'

248613015 TID=00000254 SID=0000 Bind - : (0x0435:0xA2B0)

Variable='CLIENT.CLIENTCODE' Status=0

248613015 TID=00000254 SID=0000 Bind - : (0x0435:0xA2B0)

Variable='CLIENT.CLIENTCODE' Status=0

Tracing the creation and deletion of Rowsets

When you call the RowsetTree.ReadFromDB method to read data from the database, the Rowsets

of the RowsetTree are automatically created. Moreover, when you call the RowsetTree.Dispose

method, these Rowsets are automatically deleted. You will now trace the creation and deletion of

the Rowsets.

1. Disable all the traces activated during the previous examples by selecting the root node

(Trace) and clicking Disable All Traces in the Rep++ Configuration Panel.

2. Activate the Creation and Deletion traces from the Rowset trace category.

3. Run your program.

The trace generated is shown below.

251743015 TID=00000778 SID=0000 Creation - : Instance=0x0428:0x5138 Father

= 0x0000:0x0000 CLIENT horizontal CLIENT

251743078 TID=00000778 SID=0000 Creation - : Instance=0x0428:0x8B10 Father

= 0x0428:0x5138 ADDRESS horizontal CLIENT

251743078 TID=00000778 SID=0000 Creation - : Instance=0x0427:0x5630 Father

= 0x0428:0x8B10 PHONE horizontal CLIENT

251743093 TID=00000778 SID=0000 Creation - : Instance=0x0427:0x6D60 Father

= 0x0428:0x8B10 PHONE horizontal CLIENT

251743093 TID=00000778 SID=0000 Creation - : Instance=0x0435:0xA2B0 Father

= 0x0428:0x5138 ADDRESS horizontal CLIENT

251743093 TID=00000778 SID=0000 Creation - : Instance=0x0427:0xC210 Father

= 0x0435:0xA2B0 PHONE horizontal CLIENT

251743125 TID=00000778 SID=0000 Deletion - : Instance = 0x0427:0x5630

 Father=0x0428:0x8B10 PHONE CLIENT fRetVal=0

251743125 TID=00000778 SID=0000 Deletion - : Instance = 0x0427:0x6D60

 Father=0x0428:0x8B10 PHONE CLIENT fRetVal=0

251743125 TID=00000778 SID=0000 Deletion - : Instance = 0x0428:0x8B10

 Father=0x0428:0x5138 ADDRESS CLIENT fRetVal=0

251743125 TID=00000778 SID=0000 Deletion - : Instance = 0x0427:0xC210

 Father=0x0435:0xA2B0 PHONE CLIENT fRetVal=0

251743125 TID=00000778 SID=0000 Deletion - : Instance = 0x0435:0xA2B0

 Father=0x0428:0x5138 ADDRESS CLIENT fRetVal=0

251743125 TID=00000778 SID=0000 Deletion - : Instance = 0x0428:0x5138

 Father=0x0000:0x0000 CLIENT CLIENT fRetVal=0

The trace shows all the Rowsets created or deleted during the execution of the program. For each

Rowset, its memory address, the memory address of its father Rowset and its RowsetDef name

are displayed.

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 9

Tracing the lifetime of the Rep++ Application object

To trace the lifetime of the Rep++ Application object in a .NET application, you need to:

1. Disable all the traces activated during the previous examples.

2. Activate the AppLifeTime trace from the .NET trace category.

3. Run your program.

The trace generated shows that a Rep++ Application object is created, initialized and disposed of.

250114046 TID=00000fa8 SID=0000 AppLifeTime - : [010fe528] Wrapper Created

250114515 TID=00000fa8 SID=0000 AppLifeTime - : [010fe528] CreateFromRes - New

object - Sys='DEMO' Prg='DEMOCLIENT' Conn='MARVIN_LOCAL' User='$SUPERUSER'

eLang='0' Method='Normal' Design='false'

250114515 TID=00000fa8 SID=0000 AppLifeTime - : [010fe528] CreateFromRes - Ref

Count = 1 Design = false

250114593 TID=00000fa8 SID=0000 AppLifeTime - : [010fe528] Disposing.

Defining your own traces

Rep++ allows you to create your own traces programmatically. You can add messages to an

existing trace or create your own trace and add messages to it. The example code used in this

article was modified to create a new trace and add messages before each instruction in the code.

RepPP.Application app;

RepPP.RowsetTreeDef rstDef;

RepPP.RowsetTree rsTree;

RepPP.Trace trace;

app = RepPP.Application.CreateFromRes();

trace = app.Traces.Create("MyTrace", RepPP.TrcType.sdTrcTypeThreeState);

trace.State = RepPP.TrcState.sdTrcStateGeneral;

trace.Output = RepPP.TrcOutput.sdTrcOutputMonitor;

trace.SetTrace(RepPP.TrcDisplay.sdTrcDispGeneral, "Get the CLIENT RowsetTreeDef

object\n");

rstDef = app.RowsetTreeDefs["CLIENT"];

trace.SetTrace(RepPP.TrcDisplay.sdTrcDispGeneral, "Build the RowsetTreeDef SQL

commands\n");

rstDef.BuildSqlCommand();

trace.SetTrace(RepPP.TrcDisplay.sdTrcDispGeneral, "Create a new CLIENT

RowsetTree\n");

rsTree = rstDef.RowsetTrees.Add();

trace.SetTrace(RepPP.TrcDisplay.sdTrcDispGeneral, "Read data from the

database\n");

rsTree.ReadFromDb();

. . .

trace.SetTrace(RepPP.TrcDisplay.sdTrcDispGeneral, "Dispose of the CLIENT

RowsetTree\n");

rsTree.Dispose();

trace.SetTrace(RepPP.TrcDisplay.sdTrcDispGeneral, "Dispose of the Rep++

Application object\n");

app.Release();

The execution of this program generates the following trace in the Rep++Trace Monitor.

254754625 TID=00000a2c SID=0000 MyTrace - : Get the CLIENT RowsetTreeDef object

254754656 TID=00000a2c SID=0000 MyTrace - : Build the RowsetTreeDef SQL

commands

Technical Note Using the Rep++ Trace System

© Consyst SQL Inc. All rights reserved. ● 10

254754656 TID=00000a2c SID=0000 MyTrace - : Create a new CLIENT RowsetTree

254754687 TID=00000a2c SID=0000 MyTrace - : Read data from the database

254754734 TID=00000a2c SID=0000 MyTrace - : Dispose of the CLIENT RowsetTree

254754750 TID=00000a2c SID=0000 MyTrace - : Dispose of the Rep++ Application

object

For details about the Trace and Traces classes, see the Rep++ documentation available from the

Help Viewer application of Visual Studio®, under Rep++ Objects, Collections and Events.

